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Abstract
The violation of the Noether relation between symmetries and charges is
reduced to the time dependence of the charge associated with a conserved
current. For the U(1) gauge symmetry a non-perturbative control of the charge
commutators is obtained by an analysis of the Coulomb charged fields. From
this, in the unbroken case we obtain a correct expression for the electric charge
on the Coulomb states, its superselection and the presence of massless vector
bosons; in the broken case, we obtain a general non-perturbative version of
the Higgs phenomenon, i.e. the absence of massless Goldstone bosons and of
massless vector bosons. The conservation of the (gauge-dependent) current
associated with the U(1) axial symmetry in QCD is shown to be compatible
with the time dependence of the corresponding charge commutators and a non-
vanishing η′ mass, as a consequence of the non-locality of the (conserved)
current.

PACS numbers: 11.30.−j, 12.38.−t

1. Introduction

The role of continuous symmetries and their breaking in the recent developments of theoretical
physics needs not to be further discussed here. However, in our opinion, the interplay between
symmetries and localization properties of the fields for infinitely extended systems is not
sufficiently emphasized in the textbook presentations, in particular in connection with the
phenomenon of symmetry breaking in gauge theories and in Coulomb systems.

We shall focus our attention on the case of continuous symmetries which commute with
space translations and with time evolution. For infinitely extended systems described by field
variables, ϕ(x, t), and by a Lagrangian function, an internal symmetry is a transformation of
the fields g : ϕ(x, t) → (gϕ)(x, t), g independent of x and t, which leaves the Lagrangian
density invariant. At the level of local variables and measurements the implications of such an
invariance property are not as direct as they appear. In fact, the invariance of the Lagrangian
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under a (continuous) one parameter group of symmetries implies the existence of a conserved
current jµ(x, t),

∂t j0 + div j ≡ ∂µjµ(x) = 0, (1.1)

i.e. a local conservation law. However, the implications of such a local conservation, in
particular the existence of a conserved charge or the existence of Goldstone bosons in the case
of symmetry breaking, critically depend on the localization properties of the relevant variables
and configurations.

This problem has been extensively discussed in the literature [1, 2] under the assumption
that, according to the general wisdom of the Noether theorem, the time-independent symmetry
transformations of the fields are generated by the space integral of the charge density j0 of the
corresponding Noether conserved current jµ:

δA = i lim
R→∞

[QR,A],

QR ≡ j0(fR, α) ≡
∫

ds+1xj0(x, t)fR(x)α(x0),
(1.2)

where the smearing test functions fR(x) = f (|x|/R), f, α ∈ D(R), f (x) = 1, for |x| � R,
take care of the necessary ultraviolet regularization. It is enough that the limit exists for the
field correlation functions. The independence of the rhs of equation (1.2) from the choice of
the test function α, with the normalization condition

∫
dx0 α(x0) = 1, is formally equivalent to

the time independence of the (space) integral of the charge density, and therefore it is necessary
for the validity of equation (1.2). It is also assumed that equation (1.2) holds independently
of whether the symmetry is broken or not.

The validity of such assumptions follows if jµ and A are relatively local, e.g. if the
canonical structure is local and the time evolution of both jµ and A is relativistically causal;
in this case, the limit is reached for finite values of R, and equation (1.1) implies the
independence of α and equation (1.2). The same conclusion holds if the delocalization
induced by the time evolution is not worse than r−2−ε, ε > 0. However, important physical
phenomena are governed by time-independent symmetries for which the current conservation,
equation (1.1), does not imply the generation of the symmetry by the integral of the charge
density, equation (1.2), and one cannot rely on the above assumptions.

The crucial issue is the time dependence of the integral of the charge density, namely
the α dependence of the rhs of equation (1.2), in spite of the conservation of the current,
i.e. the failure of sufficient relative locality between ji and the operator A. The aim of this
note is to critically examine the mechanisms at the basis of such a failure and their physical
consequences both in the case of an exact and of a broken symmetry.

The inevitable non-locality of the charged fields has been proved to follow if the current
obeys a local Gauss law: jµ = ∂νFνµ, with Fµν = −Fνµ a local field [4]; however, this does
not directly imply that the charged fields are not local with respect to ji (e.g. in the classical
Maxwell–Dirac and Maxwell–Klein–Gordon the charged fields are local with respect to ji

[5]) and, even more importantly, that there is enough relative non-locality to force the α

dependence of the rhs of equation (1.2) and, therefore, the violation the Noether relation
between the symmetry and the integral of the charge density of the corresponding current,
equation (1.2). In section 3, by applying the analysis of [5, 6] we shall show that such
phenomenon arises in the (physical) Coulomb gauge of an Abelian U(1) gauge symmetry,
both in the case of unbroken and broken U(1) symmetries.

In section 4, we show that in the case of unbroken symmetry, the (time-independent)
generation of the U(1) symmetry can be obtained by a suitable time average of the integral
of the charge density, through a modified Requardt prescription [7]. This allows for a direct
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proof of the charge superselection rule in the (physical) Coulomb gauge (a previous proof
relied on the general assumptions of the Feynman–Gupta–Bleuler gauge [8]).

In section 5, we discuss the implications of the breaking of the U(1) gauge symmetry
on the energy–momentum spectrum. By exploiting the Dirac–Symanzik–Steinmann (DSS)
construction of Coulomb charged fields [5, 9] we shall obtain a general non-perturbative
version of the Higgs phenomenon [10]: The (time-independent) U(1) gauge symmetry is
generated by the integral of the charge density discussed in section 4, and in this case unbroken,
if and only if the Fourier transform of the two-point function of Fµν has a contribution δ(k2),
i.e. there are massless vector bosons.

If the U(1) gauge symmetry is broken, then it cannot be generated (in the above sense) by
the current jµ = ∂νFµν ; in this case the vacuum expectation limR→∞〈[j0(fR, t), A]〉, where
A is a charged field with 〈A〉 �= 0, cannot vanish nor be time independent and its Fourier
spectrum coincides with the energy spectrum at k → 0 of the two-point function of Fµν ; this
cannot have a δ(k2) contribution, so that the absence of massless Goldstone bosons coincides
with the absence of massless vector bosons.

The strict analogy of the above mechanism with the evasion of the Goldstone theorem in
non-relativistic Coulomb systems is discussed in section 6. In section 7 we discuss the U(1)

problem in QCD; we show (on the basis of local gauges) that the axial U(1) transformations
define a symmetry of the observable field algebra and argue that its spontaneous breaking is
not accompanied by massless Goldstone bosons as a consequence of the time dependence of
the corresponding charge commutators in the (physical) Coulomb gauge.

2. Locality and symmetries in quantum field theory

In the Wightman formulation of quantum field theory (QFT) [11] one of the basic assumptions
is that the field algebra F satisfies microscopic causality, also called locality; this means that
fields commute or anticommute at space-like separations (depending on their spin). While
microscopic causality is a must for the subalgebra Fobs generated by observable fields, there is
no cogent physical reason for the locality of the whole field algebra, which typically involves
non-observable fields (e.g. fermion fields or charged fields).

The locality condition for F may be read as a statement about the localization of the states
obtained by applying F to the vacuum. Following Doplicher, Haag and Roberts (DHR) [12],
a state ω, defined by its expectations ω(A) on the observables, A ∈ Aobs, is localized in the
(bounded) spacetime region O (typically a double cone), if for all observable A localized in
the spacetime complement O′ of O, i.e. in the set of points which are space-like to every point
of O, briefly ∀A ∈ Aobs(O′), ω coincides with the vacuum state ω0:

ω(A) = ω0(A), ∀A ∈ Aobs(O′).

Now, for any bounded region O the unitary operators UO constructed in term of fields localized
in O, typically ϕ(f ), with supp f ⊆ O, give states ω(A) ≡ (UO	0, AUO	0) which are
localized in O in the DHR sense. In fact, thanks to the locality of the field algebra, UO
commutes with Aobs(O′) and therefore ω(A) = ω0(A),∀A ∈ Aobs(O′).

It is important to stress that in general the vacuum sector H0, obtained by applying the
observable field algebra Fobs to the vacuum, does not exhaust the physically interesting states
and the non-observable fields of F play the important role of producing from the vacuum the
physical states which do not belong to H0. The properties of the non-observable fields are
therefore physically interesting and worthwhile to study in view of the states they produce;
technically the unitary operators constructed in terms of non-observable fields intertwine
between the vacuum sector and the other physically relevant representations of the observable
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algebra. The locality property of F guarantees that such intertwiners are localizable and so
are the corresponding states.

In general, a one parameter group of internal symmetries βλ, λ ∈ R, is a group of field
transformations, technically a one parameter group of *-automorphisms of the field algebra,
which commutes with the spacetime translations αx,t . The relation between symmetries and
localization is formalized by the following property: βλ is locally generated on the field
algebra F if

(i) there exists a conserved current field jµ, ∂µjµ(x) = 0,
(ii) the infinitesimal transformation of the field algebra is given by

δF = i lim
R→∞

[QR,F ], ∀F ∈ F, (2.1)

where QR is morally the integral of the charge density j0 in the sphere of radius R, suitably
regularized to cope with the (possible) distributional UV singularities of jµ, see equation (1.2).

The existence of a conserved current may be taken as equivalent to the invariance of
the Lagrangian (or the action); however, condition (ii) is in general not obvious, even if it
is often taken for granted. Here, locality plays a crucial role. In fact, if the field algebra is
local both the limit R → ∞ exist and it is independent of the time smearing, equivalently
limR→∞[j0(fR, t), F ] is independent of time:

lim
R→∞

∂t [j0(fR, t), F ] = 0, (2.2)

so that equation (2.1) may be checked by (canonical) equal-time commutators.
If the vacuum expectations of the fields, which, by the cluster property, describe their

mean behaviour at space infinity, are invariant under βλ, the symmetry is globally realized in
the universe described by the given vacuum, i.e. one has a global conservation law, whereas if
some expectation is not invariant, 〈δF 〉 �= 0, the symmetry is spontaneously broken and there
is no global charge associated with the current continuity equation.

For locally generated symmetries, the spontaneous symmetry breaking implies a strong
(non-perturbative) constraint on the energy–momentum spectrum, namely the existence of
massless particles, called Goldstone bosons, with the same (conserved) quantum numbers of
the current and of the field F with non-invariant vacuum expectation (symmetry breaking order
parameter).

The original proof of the theorem [13] applies to the case in which the non-symmetric
order parameter is given by a scalar (elementary) field ϕ and exploits the Lorentz covariance
of the two-point function 〈jµ(x)ϕ(y)〉, but it was later realized that the crucial property is the
relative locality between jµ and the symmetry breaking order parameter F (which needs not
to be one of the basic or elementary fields, but may be a polynomial of them) [1]. The lack
of appreciation of this point has been at the basis of discussions and attempts for evading the
Goldstone theorem, which eventually led to the Higgs mechanism and to the standard model
of elementary particles.

3. Locality and symmetries in gauge theories

Gauge field theories exhibit very distinctive features, with fundamental experimental
consequences, such as spontaneous symmetry breaking with energy gap (Higgs mechanism)
in apparent contradiction with the Goldstone theorem, quark confinement and linearly rising
potential in contrast with the cluster property, axial current anomaly, asymptotic freedom etc4.
4 For the general structure and properties of gauge field theories see [14]. For the lack of locality and the violation of
cluster property see [15]; for a non-perturbative discussion of the evasion of the Goldstone theorem in gauge theories
see [16, 17].
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It is natural to try to understand such departures from standard quantum field theory in
terms of general ideas independently of the specific model. The original motivation by Yang
and Mills, namely that quantum numbers or charges associated with gauge transformations
have only a local meaning does not have a direct experimental interpretation since, as a
consequence of confinement and symmetry breaking, the observed physical states do not carry
non-Abelian gauge charges. More generally, by the definition gauge transformations reduce to
the identity on the observables, so that they can be defined only by introducing non-observable
fields. The role of gauge symmetries has therefore been regarded [12, 18] as that of providing
a classification of the (inequivalent) representations of the observable algebra, through the
action of the charged fields. It is still unexplained why only states corresponding to one-
dimensional representations of the gauge groups (which include the non-Abelian gauge group
of permutations of identical particles) occur in nature.

For the meaning of local gauge invariance, we recall that the standard characterization
of gauge field theories is that they are formulated in terms of (non-observable) fields
which transform non-trivially under the group G of local gauge transformations leaving
the Lagrangian invariant.

In classical field theory, the invariance of the Lagrangian or of the Hamiltonian under a
(n-dimensional) Lie group G of spacetime-independent field transformations can be checked
by considering the infinitesimal variation of the fields (for simplicity we take G compact and
include the coupling constants in the generators):

δϕi(x) = iεat
a
ijϕj (x) ≡ i(εtϕ)i(x), (3.1)

δAa
ν(x) = iεcT

c
abA

b
ν(x) ≡ i(εT Aν)

a(x), T a
bc = if b

ac, (3.2)

where a = 1, . . . , n, i = 1, . . . , d, summation over repeated indices is understood, ε are the
infinitesimal group parameters, t is the (d-dimensional) matrix representation of the generators
of the group G, provided by the fields ϕi and f are the Lie algebra structure constants.

The local gauge group G associated with G (called the global group), is the infinite-
dimensional group obtained by letting the group parameters to be regular localized functions
ε(x) of the spacetime points, typically ε ∈ D(R4) or ∈ S(R4), with the result of an additional
term ∂ν εa(x) in equation (3.2).

It is very important to keep separate the Lie algebra L(G) of G and the infinite-dimensional
algebra corresponding to G, briefly denoted by L(G). It would be improper to consider the
first as a finite-dimensional subalgebra of the second, both from a mathematical and for a
physical points of view. In particular, trivial representations of the L(G) need not to be trivial
representations of L(G), and in fact the construction of gauge invariant charged fields is one
of the strategies for the analysis of gauge theories; an example of such a construction is the
DSS construction in the Abelian case of the DSS fields [9].

A physically very important consequence of the invariance under a local gauge group is
that one gets a stronger form of the local conservation laws ∂µJ a

µ(x) = 0, implied by the
invariance under the global group G. In fact, by the second Noether theorem, the conserved
currents,

J aµ ≡ −i
δL

δ∂µϕi

(taϕ)i − i
δL

δ∂µAb
ν

(T aAν)
b ≡ jaµ(ϕ) + jaµ(A), (3.3)

satisfy the additional equation

J b
µ = δL

δA
µ

b

= ∂νGb
µν + E[A]b, G

µν

b ≡ − δL
δ∂µAb

ν

= −G
νµ

b , (3.4)

where E[A]b = 0 are the Euler–Lagrange (EL) equations of motion of A.
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Equations (3.4) encode the invariance under the local gauge group G, briefly gauge
invariance, and can be taken as a characterization of such an invariance property; they shall be
called local Gauss’ laws, since Gauss’ theorem represents their integrated form. The current
continuity equation is trivially implied without using the EL equations for the matter fields.

The validity of local Gauss’ laws appears to have a more direct physical meaning than
the gauge symmetry, which is non-trivial only on non-observable fields. It is therefore
tempting to regard the validity of local Gauss’ laws as the basic characteristic feature of gauge
field theories, and to consider gauge invariance merely as a useful recipe for writing down
Lagrangian functions which automatically lead to the validity of local Gauss’ laws.

Actually, for the canonical formulation of gauge field theories one has to exploit the
freedom of fixing a gauge, typically by adding a gauge fixing term in the Lagrangian (irrelevant
for the physical implications), and this can be done even at the expense of totally breaking the
gauge invariance of the Lagrangian (as e.g. in the so-called unitary gauge). Thus, the gauge
invariance of the Lagrangian is not so crucial from a physical point of view, whereas so is
the validity of local Gauss’ laws, which is preserved under the addition of a gauge fixing and
the corresponding subsidiary condition [14].

As we shall see below, the local Gauss’ law is at the basis of most of the peculiar features
of gauge quantum field theories, with respect to standard quantum field theories5.

From a structural point of view, a first consequence of the local Gauss’ law is that, if the
local charges Qa

R , equation (1.2), generate the global group G, the charged fields cannot be
local [4]. In fact, the field F is charged with respect to the ath one parameter subgroup of G if
δaF �= 0, whereas if F is local with respect to the conserved current J a

µ ,

lim
R→∞

[
Qa

R, F
] =

∫
d3x dt∇ifR(x)α(t)[G0i (x, t), F ] = 0, (3.5)

since supp ∇ifRα ⊂ {R � |x| � R(1 + ε)} becomes space-like with respect to any bounded
region for R large enough. The rhs also vanishes for more general time smearing, αR(t) with
support in [−R(1 − ε), R(1 − ε)] (see below).

Since the local generation of G follows from the locality of the time evolution and of the
equal time canonical commutators, equation (3.5) implies that the charged fields are not local
with respect to Gi0.

The physical reason is that Gauss’ law establishes a tight link between the local
properties of the solutions and their behaviour at infinity; e.g. the charge of a solution of
the electrodynamics equation can be computed either by integrating the charge density, i.e. a
local function of the charge carrying fields, or by computing the flux of the electric field at
space infinity.

This result has very strong implications at the level of structural properties of gauge
quantum field theories: the field algebra generated by Ga

µν and the charged fields cannot be
local.

This may appear as a mere gauge artefact with no physical relevance, [21] since charged
fields are not observable fields. However, charged fields play the important role of generating
from the vacuum charged states and describing (even neutral) states in terms of charged
particles. The non-locality of the charged fields, as implied by the local Gauss’ law, has
therefore the important physical consequence that the charged states cannot be local in the
DHR sense.

5 The recognition of local Gauss’ laws as the basic characteristic features of gauge field theories has been argued
and stressed (also in view of the quantum theories) in [19] and later re-proposed [20], ignoring the above references.
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4. Gauss’ law and local generation of symmetries

Since the fields which transform non-trivially under the global group G cannot be local, the
local generation of G becomes problematic, namely both the existence of the limit R → ∞
in equation (1.2), as well as its time independence are in question and, as far as we know, no
general conclusion follows directly from Gauss’ law. As we shall show, both questions can be
answered for Coulomb charged fields, by (crucially) exploiting their construction in terms of
the local charged fields of the Feynman–Gupta–Bleuler (FGB) gauge.

Proposition 4.1. In the Coulomb gauge of QED, ∀	,� ∈ FC	0, with FC the field algebra
of the Coulomb gauge and 	0 the vacuum vector, the limits

lim
R→∞

(	, [j0(fRα), F ]�), F ∈ Fc (4.1)

exist; however, they are (generically) α dependent if F is a charged field and therefore
equation (1.2) fails.

Proof. The field algebra FC is generated by the vector potential Ai
C and the elementary

charged fields ϕC , so that it is enough to discuss the case F = ϕC and a basic ingredient is the
DSS construction [9] of the Coulomb charged fields ϕC in terms of the local fields ϕ,Aµ of
the FGB gauge:

ϕC(y) = exp(ie(−−1∂jAj )(y))ϕ(y). (4.2)

The necessary ultraviolet regularization of equation (4.2) has been discussed by Steinmann
[9] within the perturbative expansion. A regularized version, which only uses the existence of
the FGB correlations and is constructed by using in the exponential fields smeared in space
and time, has been given by Buchholz et al [5]. In this framework, the space asymptotic
of the correlation functions of the commutator [Fµν(x), ϕC(y)] is given, at all orders in the
expansion of the exponential entering in equation (4.2), with corrections O(|x|−4), by

[Fµν(x), ϕC(y)] ∼ −ie

4π

∫
d3z ∂j

z

1

|z − y| 〈[Fµν(x), Aj (z, y0)]〉ϕC(y). (4.3)

Since 〈[Fµν(x), Aj (z)]〉 = i(∂νgµj − ∂µgνj )K(x − z), with K being the commutator
function of the electromagnetic field, one has, for R → ∞,

[j0(fR, x0), ϕC(y)] = [∂iF0i (fR, x0), ϕC(y)] ∼ −e∂0

∫
d3x fR(x)K(x − y)ϕC(y). (4.4)

By the support properties of K(x) = −i
∫

dρ(m2)ε(k0)δ(k
2 − m2) e−ikx , the charge density is

integrable and, in all correlation functions,

lim
R→∞

[j0(fR, x0), ϕC(y)] = e

∫
dρ(m2) cos(m(x0 − y0))ϕC(y). (4.5)

The rhs is independent of time if and only if dρ(m2) = λδ(m2), i.e. if Fµν is a free field.
The same conclusions are obtained if instead of equation (4.2) one uses the regularized

version of [5], since in this case equations (4.3)–(4.5) get changed only by a convolution with
a test function h(y0) ∈ D(R). �

The time dependence of limR→∞[j0(fR, t), F ], F ∈FC is compatible with the
conservation of the current because the above analysis gives

[ji(x), ϕC(y)] = (e/4π)

∫
d3z ∂i

z|z − y|−1∂2
0 K(x − z), z0 = y0,

lim
R→∞

[Q̇R(x0), ϕC(y)] = [div j(fR, x0), ϕC(y)] �= 0.
(4.6)
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The time dependence of the commutator of equation (4.5) is at the basis of the appearance
of an infinite renormalization constant in the equal time commutator of the charge density
j0 = ∂iF0i and the Coulomb charged field ϕC :

[j0(x), ϕC(y)]x0=y0 = e(Z3)
−1δ(x − y)ϕC(y),

(all fields being renormalized fields and e the renormalized charge), as it appears by comparing
the integrated form of the above equal time commutator and equation (4.4). For such a
phenomenon the vacuum polarization due to fermionic loops plays a crucial role, so that
the semi-classical approximation does not provide relevant information, and in fact the
phenomenon does not appear in the classical theory.

Proposition 4.1 shows that, in contrast with the local case, the equal time commutators
are misleading for the charge commutators and, contrary to statements in the literature, the
U(1) charge group of QED is not locally generated by the integral of the charge density, in
the sense of equation (4.1). Thus, the heuristic argument that if the symmetry commutes with
the time translations, equivalently if the current continuity equation holds, then the generating
charge commutes with the Hamiltonian and is therefore independent of time is not correct.
Time independence of the charge commutator holds provided one has (relative) locality at
all times between jµ and the charged fields; now, even if the equal time commutators have a
sufficient localization, the time evolution may induce a delocalization leading to a failure of
equation (2.2).

5. Electric charge and its superselection

The results of the previous section leave open the question of whether a modification of
equation (1.2) may yield a relation between a gauge symmetry and the charge density of the
corresponding Noether current. As we shall discuss below, if the gauge symmetry is unbroken
a time average of equation (1.2), similar to that proposed by Requardt [7], provides the required
relation.

Actually, equation (4.4) gives the renormalized charge for any time smearing αT (R)(x0) ≡
α(x0/T (R))/T (R), with T/R → 0 as R → ∞ [6], if dρ(k2) has a δ(k2) contribution.
Moreover, for a certain class of functions T (R), which depends on the infrared behaviour
of k2 dρ(k2), j0(fRαT (R))	0 converges strongly to zero [6]. A smearing, which gives both
results independently of any information on the above infrared behaviour, is given by taking
T (R) = δR, with δ → 0 after the limit R → ∞.

Proposition 5.1. In the Coulomb gauge the U(1) gauge symmetry is generated by the integral
of the charge density

δF = i lim
δ→0

lim
R→∞

[QRδ, F ], F ∈ Fc (5.1)

QRδ ≡ j0(fRαδR), αδR(x0) ≡ α(x0/(δR))/(δR) (5.2)

if and only if dρ(k2) has a δ(k2) contribution, i.e. there are massless photons.
Moreover, one has

strong − lim
R→∞

j0(fRαδR)	0 = 0, (5.3)

so that, if there are massless photons one can express the electric charge Q, i.e. the generator
of the U(1) symmetry, as an integral of the charge density j0 not only in the commutators with
charged fields, but also in the matrix elements of the Coulomb charged states �,	 ∈ FC	0:

(�,Q	) = lim
δ→0

lim
R→∞

(�, j0(fRαδR)	). (5.4)
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Proof. The time smearing of equation (4.4) with αδR(x0) gives

[j0(fRαδR), ϕC(y)] = e

∫
dρ(m2) d3qf̃ (q)Re[e−iωR(q,m)y0 α̃(δ

√
q2 + R2m2)]ϕC(y),

where ωR(q,m) ≡
√

q2R−2 + m2. Then, since α is of fast decrease, by the dominated
convergence theorem the rhs vanishes if the dρ(m2) measure of the point m2 = 0 is zero, i.e.
if there is no δ(m2) contribution to dρ. In general, if the point m2 = 0 has measure λ, one gets
λeϕC(y); finally the renormalization condition of the asymptotic electromagnetic field gives
λ = 1.

For the proof of equation (5.3) one has (d�m(k) ≡ d3k(2
√

k2 + m2)−1)

‖QRδ	0‖2 =
∫

dρ(m2)m2 d�m(k)|kf̃R(k)α̃(δR
√

k2 + m2)|2

=
∫

dρ(m2) d�m(q/R)m2R|α̃(δ
√

q2 + m2R2)qf̃ (q)|2.

Now, m2R|α̃(δ
√

q2 + m2R2)|2 converges pointwise to zero for R → ∞ and since dρ(m2)

is tempered and α is of fast decrease the rhs of the above equation converges to zero by the
dominated convergence theorem. �

One of the basic Dirac–Von Neumann axioms of quantum mechanics is that the states of
a quantum mechanical system are described by vectors of a Hilbert space H and that every
vector describes a state, equivalently all projections and therefore all (bounded) self-adjoint
operators represent observables (briefly Aobs = B(H)). It was later realized [22] that, typically
for systems with infinite degrees of freedom, the physical states may belong to a direct sum
of irreducible representations of the observable algebra, and therefore one cannot measure
coherent superpositions of vectors belonging to inequivalent representations of the observable
algebra. This means that if H = ⊕Hj , each Hj carrying an irreducible representation of
Aobs, a linear combination α	1 + β	2 of vectors 	1, 	2 belonging to different Hj is not
a physically realizable (pure) state and it rather describes a mixture with the density matrix
|α|2	1 ⊗ 	1 + |β|2	2 ⊗ 	2.

The impossibility of measuring such relative phases is equivalent to the existence of
operators Q, called superselected charges, which commute with all the observables (and have
a denumerable spectrum if the Hilbert space is separable)6.

Wick, Wightman and Wigner (WWW) proved that rotation and time reversal invariance
imply that the operator QF = (−1)2J = (−1)F , where J is the angular momentum and F is
the fermion number modulo 2 is a superselected charge (univalence superselection rule, also
called fermion-boson superselection rule). It was later shown that only rotational invariance
was needed for the proof [23]. WWW also suggested that the electric charge and possibly the
baryon number define superselected charges.

The superselection rule for the electric charge was later questioned and debated [25]. The
proof may be dismissed as trivial by arguing that observables must be gauge invariant and that
gauge invariance implies zero charge, but as stressed before such an argument is not correct,
since the latter implication is contradicted by the Dirac–Symanzik–Steinmann field operator
[9] showing that gauge invariant operators need not to commute with the electric charge.

The superselection of the electric charge Q may be shown to be a consequence of the
locality of the observables and the Gauss law, provided one can express Q as an integral

6 The superselected charges are often called gauge charges, but we prefer the name of superselected charges. The
gauge group which classify the representations of the observable algebra defined by DHR localized states has been
proved to be compact [18].
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of j0 = ∂iF0i . A proof of the charge superselection rule has been given by using a local
gauge quantization of QED, e.g. the Feynman–Gupta–Bleuler gauge, and by identifying Q
with the generator of the global gauge transformations of the local fields [8]. In this gauge,
the construction of the DSS operators [6] makes clear that invariance under the local gauge
transformations does not imply invariance under the global gauge transformations for non-
local operators.

By exploiting proposition 5.1 one can get a direct proof of the charge superselection rule
in the physical Coulomb gauge.

Proposition 5.2. The electric charge Q, defined in the Coulomb gauge by

Q	0 = 0, [Q,ϕC(y)] = eϕC(y),

commutes with the observables (on the Coulomb states)

(�, [Q,A]	) = lim
δ→0

lim
R→∞

(�, [j0(fRαδR), A]	) = 0, ∀�,	 ∈ FC	0, (5.5)

and it is therefore superselected.

Proof. The proof follows from equation (5.4), which relates the electric charge Q and the
electric flux at infinity, by the argument which exploits the relative locality of the observables
with respect to the (observable) electromagnetic field, as required by Einstein causality, [8, 24]
so that the rhs vanishes by the same argument of equation (3.5). Actually the rhs of
equation (5.5) vanishes independently of the adopted time smearing by locality. �

The superselection of electromagnetic fluxes at space-like infinity has been discussed
by Buchholz [24], under the assumption of weak convergence. The special choice of
spacetime smearing j0(fRαδR) adopted above guarantees the strong convergence on the
vacuum, convergence in expectations on Coulomb charged states and the relation between
the corresponding electric flux and the electric charge.

6. Gauge symmetry breaking and the energy–momentum spectrum. The Higgs
mechanism

The Higgs mechanism, relative to the breaking of the global group G in a gauge quantum field
theory, plays a crucial role in the standard model of elementary particle physics. The standard
discussion of this mechanism is based on the perturbative expansion and, in particular, the
evasion of the Goldstone theorem is checked at the tree level with the disappearance of the
massless Goldstone bosons and the vector bosons becoming massive [26]. This is displayed
by the Higgs–Kibble (Abelian) model of a (complex) scalar field ϕ interacting with a real
gauge field Aµ, defined by the following Lagrangian (ρ(x) ≡ |ϕ(x)|):

L = − 1
4Fµν

2 + 1
2 |Dµϕ|2 − U(ρ), Dµ = ∂µ − ieAµ (6.1)

invariant under the U(1) gauge group: βλ(ϕ) = eiλϕ, βλ(Aµ) = Aµ and under local gauge
transformations.

At the classical level, one may argue that by a local gauge transformation

ϕ(x) = eiθ(x)ρ(x) → ρ(x), Aµ(x) → Aµ(x) + e−1∂µθ(x) ≡ Wµ(x)

one may eliminate the field θ from the Lagrangian, which becomes

L = − 1
4Fµν

2 + 1
2e2ρ2W 2

µ + 1
2 (∂µρ)2 − U(ρ). (6.2)

If the (classical) potential U has a non-trivial (absolute) minimum ρ = ρ one can consider
a semiclassical approximation based on the expansion ρ = ρ + σ , treating ρ as a classical
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constant field and σ as small. At the lowest order, keeping only the quadratic terms in σ and
Wµ one has

L(2) = − 1
4Fµν

2 + 1
2e2ρ2W 2

µ + 1
2 (∂µσ )2 − 1

2U ′′(ρ)σ 2. (6.3)

This Lagrangian describes a massive vector boson and a massive scalar with (square) masses
M2

W = e2ρ2, m2
σ = U ′′(ρ), respectively. This argument is commonly taken as an evidence

that there are no massless particles in the theory described by the Lagrangian L.
This argument, widely used in the literature, is not without problems, because already

at the classical level, for the equivalence between the two forms of the Lagrangian,
equations (6.1) and (6.2), one must add the constraint that ρ is positive, a property which
is in general spoiled by the time evolution given by the Lagrange equations for the variables
ρ and Wµ. For the variables of the quadratic Lagrangian (6.3), one should require that the
time evolution of σ keeps it bounded by ρ, a condition which is difficult to satisfy. Thus, the
constrained system is rather singular and its mathematical control is doubtful. The situation
becomes obviously more critical for the quantum version, since the definition of |ϕ(x)| is very
problematic also for distributional reasons. In conclusion, ρ is a very singular field and one
cannot consider it as a genuine Lagrangian (field) variable.

A better alternative is to decompose the field ϕ = ϕ1 + iϕ2 in terms of Hermitian fields,
and to consider the semiclassical expansion ϕ1 = ϕ + χ1, ϕ2 = χ2, treating χi, i = 1, 2, as
small. By introducing the field Wµ ≡ Aµ + e−1∂µχ2, one eliminates χ2 from the quadratic
part of the so-expanded Lagrangian, which gets exactly the same form of equation (6.2), with
ρ replaced by ϕ and σ by χ1.

If indeed the fields χi can be treated as small, by appealing to the perturbative (loop)
expansion one has that 〈ϕ〉 ∼ ρ �= 0, i.e. the vacuum expectation of ϕ is not invariant under
the U(1) charge group (symmetry breaking). Thus, the expansion can be seen as an expansion
around a (symmetry breaking) mean field ansatz, and it is very important that a renormalized
perturbation theory based on it exists and yields a non-vanishing symmetry breaking order
parameter 〈ϕ〉 �= 0 at all orders. This is the standard (perturbative) analysis of the Higgs
mechanism.

The extraordinary success of the standard model motivates an examination of the Higgs
mechanism from a general non-perturbative point of view. In this perspective, one of the
problems is that mean field expansions may yield misleading results about the occurrence of
symmetry breaking and the energy spectrum7. Actually, a non-perturbative analysis of the
Euclidean functional integral defined by the Lagrangian of equation (6.1) gives symmetric
correlation functions and in particular 〈ϕ〉 = 0 (Elithur–De Angelis–De Falco–Guerra
(EDDG) theorem [27]). This means that the mean field ansatz is incompatible with quantum
effects and the approximation leading to equation (6.3) is not correct8.

The same negative conclusion would be reached if (as an alternative to the transformation
which leads to equation (6.2)) by means of a gauge transformation one reduces ϕ(x) to a
real, not necessarily positive, field ϕr(x). This means that the local gauge invariance has not
been completely eliminated and the corresponding Lagrangian, of the same form (6.2) with ρ

replaced by ϕr , is invariant under a residual Z2 local gauge group. An easy adaptation of the
proof of the EDDG theorem gives 〈ϕr〉 = 0.

7 For example, the mean field ansatz on the Heisenberg spin model of ferromagnetism gives a wrong critical
temperature and an energy gap. For a discussion of the problems of the mean field expansion see e.g. [28].
8 The crux of the argument is that gauge invariance decouples the transformations of the fields inside a volume V (in
a Euclidean functional integral approach) from the transformation of the boundary, so that the boundary conditions
are ineffective and cannot trigger non-symmetric correlation functions. For a simple account of the argument see e.g.
[29].
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In order to avoid the vanishing of a symmetry breaking order parameter one must
reconsider the problem by adding to the Lagrangian (6.1) a gauge fixing LGF which breaks
local gauge invariance. Thus, the discussion of the Higgs mechanism is necessarily gauge
fixing dependent; this should not appear strange, since the vacuum expectation of ϕ is a
gauge-dependent quantity.

The important physical properties at the basis of the Higgs mechanism are particularly
clear in the so-called physical gauges, like the Coulomb gauge. Since the charged Coulomb
fields cannot be local, the local generation of the symmetry, required for the applicability of
the Goldstone theorem, is in question. Actually, in the Abelian case by using the results of
section 5 one has a non-perturbative proof of the characterization of the Higgs phenomenon
given by Weinberg on the basis of the perturbative expansion [14]. By proposition 5.1, the
(time-independent) U(1) gauge symmetry is generated by the integral of the charge density,
equation (5.1), and in this case unbroken, if and only if the Fourier transform of the two-point
function of Fµν has a contribution δ(k2), i.e. there are massless vector bosons.

Proposition 6.1. If the (time-independent) U(1) gauge symmetry is broken, then it cannot
be generated by the integral of the charge density, equation (5.1), of the associated Noether
current jµ = ∂νFνµ; in this case the vacuum expectation limR→∞〈[j0(fR, t), A]〉, where
A ∈ Fc is a charged field with 〈A〉 �= 0, cannot vanish nor be time independent and its Fourier
spectrum coincides with the energy spectrum at k → 0 of the two-point function of the vector
boson field Fµν , which cannot have a δ(k2) contribution, so that the absence of massless
Goldstone bosons coincides with the absence of massless vector bosons.

Proof. The first part follows trivially from proposition 5.1, which also states that
the symmetry generated according to equation (5.1) cannot be broken. Thus, in
the broken case the spectral measure of Fµν cannot have a δ(k2) contribution and
therefore limδ→0 limR→∞[j0(fRαδR), F ] = 0,∀F ∈ FC . The vacuum expectation
limR→∞〈[j0(fR, t), A]〉, where A is a charged field with 〈A〉 �= 0, is obtained from
equations (4.4), (4.5) and the relation with the Fourier spectrum of Fµν follows. �

In conclusion, the above discussion shows that the evasion of the Goldstone theorem
crucially depends on the non-locality of the charged fields. The local structure of the canonical
commutation relations, in particular of the commutator [j, ϕC], is not stable under the time
evolution induced by the electromagnetic interactions, as displayed by the Coulomb gauge.
This is possible in a relativistic theory because in this case the field algebra does not satisfy
manifest covariance. For these reasons, no reliable information can be inferred from the
equal time commutators and the check of the basic assumptions of the Goldstone theorem
becomes interlaced with the dynamical problem, as it happens for non-relativistic systems.
The failure of locality leading to equation (4.6), rather than the lack of manifest covariance,
is the crucial structural property which explains the evasion of the Goldstone theorem in the
Higgs mechanism as well as in Coulomb systems and in the U(1) problem, as discussed
below.

7. Coulomb delocalization and symmetries in many-body theory

A natural question, following by the above discussion of symmetry breaking, is the general
characterization of the dynamics which induces a delocalization leading to the failure of
equation (2.2), so that the symmetry is not locally generated and one may have symmetry
breaking with energy gap. In this perspective, whenever the field algebra is not manifestly
covariant, instantaneous interactions are possible and there is no longer a deep distinction
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between relativistic and non-relativistic systems. Actually, both the Coulomb gauge in QED
and the non-relativistic Coulomb systems are characterized by the instantaneous Coulomb
interaction:

Hint = 1

2
e2

∫
d3x d3yj0(x)V (x − y)j0(y). (7.1)

As argued by Swieca [3], for two-body instantaneous interactions the range of the potential
characterizes the delocalization induced by the dynamics: if V (x) falls off like |x|−d , for
|x| → ∞, then the unequal time commutators generically decay with the same power and

lim
x→∞ |x|d+ε[Ax, Bt ] = 0, (7.2)

at least order by order in a perturbative expansion in time.
The above equation suggests that the delocalization needed for equation (2.2) in three

space dimensions is that given by a potential fall-off like |x|−2. Actually, the current j involves
space derivatives and the critical decay turns out to be |x|−1, i.e. that of the Coulomb potential.

This unifies the mechanism of symmetry breaking with the energy gap of the Higgs
phenomenon and that of non-relativistic Coulomb systems (typically the breaking of the
Galilei symmetry in the jellium model or the breaking of the electron U(1) symmetry in the
BCS model of superconductivity) and provides a clarification of the analogies proposed by
Anderson [30]. For a general discussion of the energy gap associated with symmetry breaking
for long range dynamics see [17].

In gauge theories relative locality may fail because either the order parameter (as in
the Higgs phenomenon) or the conserved current (as discussed below) associated with the
symmetry of the Lagrangian are non-local fields. This is the case of the U(1) problem in
QCD.

8. Axial symmetry breaking and the U (1) problem

The debated problem of U(1) axial symmetry breaking in quantum chromodynamics without
massless Goldstone bosons can be clarified by the realization of the non-locality of the
associated axial current. As clearly shown by Bardeen [31], the U(1) axial symmetry gives
rise to a conserved, gauge-dependent, current:

J 5
µ = j 5

µ − (2π)−2εµνρσ Tr[Aν∂ρAσ − (2/3)iAνAρAσ ] ≡ j 5
µ + K5

µ,

where j 5
µ is the gauge invariant point splitting regularized fermion current ψγµγ5ψ . The

current j 5
µ is not conserved because of the anomaly, which is equivalent to the conservation

of J 5
µ.
In the usual discussion of the U(1) problem (see e.g. [32]), the current J 5

µ has been
discarded on the blame of its gauge dependence, and the lack of conservation of j 5

µ has been
taken as the evidence that the axial U(1) is not a symmetry of the field algebra and therefore
the problem of its spontaneous breaking does no longer exist. Such a conclusion would imply
that time-independent U(1) axial transformations cannot be defined on the field algebra F
and not even on its observable subalgebra Fobs, which contains the relevant order parameter.
However, as argued by Bardeen on the basis of perturbative renormalization (in local gauges),
the axial U(1) transformations define a time-independent symmetry of the field algebra and
of its observable subalgebra. This also follows from the conservation of J 5

µ (equivalent to
the anomaly of j 5

µ), since in local renormalizable gauges J 5
µ is a local operator, so that the

standard argument (see section 2) applies, i.e. equations (2.1), (2.2) hold. This implies that (at
least at the infinitesimal level) the rhs of equation (2.1) defines in this case a symmetry of the
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field algebra and in particular of the gauge invariant observable subalgebra Fobs. Therefore,
there is no logical reason for a priori rejecting the use of the gauge-dependent current J 5

µ and
of its associated Ward identities; one should only keep in mind that in physical gauges J 5

µ is a
non-local function of the observable (gauge-independent) fields.

The existence of axial U(1) transformations of the observable subalgebra Fobs implies
that the absence of parity doublets is a problem of spontaneous symmetry breaking, and the
absence of massless Goldstone bosons is reduced to the discussion of local generation of the
symmetry, equations (2.1), (2.2), as in the case of the Higgs phenomenon.

In the local (renormalizable) gauges the time-independent U(1) axial symmetry is
generated by J 5

µ (and not by j 5
µ) and the problem of massless Goldstone modes does not

arise because, as indicated by the perturbative expansion and also by the Schwinger model
[33], the correlation functions of the (local) field algebraF are axial U(1) invariant. However,
the invariance of the vacuum functional 	0, which defines the local gauge quantization, does
not mean that the symmetry is unbroken in the irreducible representations of the observable
subalgebra Fobs. In fact, 	0 gives a reducible representation of Fobs (as signalled by the
failure of the cluster property by the corresponding vacuum expectations), with a non-trivial
centre which is generated by the large gauge transformations Tn and is not pointwise invariant
under U(1) axial transformations [33]. Thus, the symmetry is broken in each pure physical
phase (θ -vacuum sectors) obtained by the diagonalization of Tn (in the technical terminology
by a central decomposition of the observables) in the subspace Fobs	0. It should be stressed
that the so-obtained (gauge invariant) θ -vacua do not provide well-defined representations
of the field algebra F , since the latter transforms non-trivially under Tn. This is at the
origin of the difficulties (and paradoxes) arising in the discussion of the chiral Ward identities
(corresponding to the conservation of J 5

µ) in θ -vacua expectations [34]. In the θ sectors a
conserved axial current may be constructed as a non-local operator, typically by using for J 5

µ

its (non-local) expression in terms of the observable fields in a physical gauge. The above
discussion, in particular the lack of time independence in equation (2.1) as a consequence of
the failure of relative locality between the current and the order parameter, applies to such
non-local currents.

The resulting mechanism for the solution of the U(1) problem can be made explicit in the
Coulomb gauge. In the Schwinger model, in the Coulomb gauge one has K0 = (e/π)A1 =
0,K1 = (e/π)A0, so that J 5

0 = j 5
0 and the (θ -)vacuum expectations of the commutators[

J 5
0 (fR, t), A

]
,

[
j 5

0 (fR, t), A
]
, A ∈ Fobs, coincide and describe the same mass spectrum;

however, the time dependence in the limit R → ∞, in the first case can be ascribed to
the non-locality of the conserved axial current, whereas in the second case it reflects the
non-conservation of j 5

µ.
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